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Abstract
Adler’s lattice equation has acquired the status of a master equation among
2D discrete integrable systems. In this paper we derive what we believe
are the first explicit solutions of this equation. In particular it turns out
to be necessary to establish a non-trivial seed solution from which soliton
solutions can subsequently be constructed using the Bäcklund transformation.
As a corollary we find the corresponding solutions of the Krichever–Novikov
equation which is obtained from Adler’s equation in a continuum limit.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

In [1] Adler derived a quadrilateral lattice equation as the nonlinear superposition principle
for Bäcklund transformations (BTs) of the Krichever–Novikov (KN) equation [2, 3]. This
equation can be written as follows (cf [4]):

A[(u − b)(̂u − b) − (a − b)(c − b)][(̃u − b)(̂̃u − b) − (a − b)(c − b)]

+ B[(u − a)(̃u − a) − (b − a)(c − a)][(̂u − a)(̂̃u − a) − (b − a)(c − a)]

= ABC(a − b), (1.1)

where u = un,m, ũ = un+1,m, û = un,m+1,̂̃u = un+1,m+1 denote the values of a scalar-dependent
variable defined as a function of the independent variables n,m ∈ Z

2. The parameters
(a,A), (b, B) and (c, C) in (1.1) are related points on the Weierstrass elliptic curve and can
be written in terms of the Weierstrass ℘-function:

(a,A) = (℘ (α), ℘ ′(α)), (b, B) = (℘ (β), ℘ ′(β)),

(c, C) = (℘ (β − α), ℘ ′(β − α)).
(1.2)

The main integrability property of this equation is that of multidimensional consistency,
cf [5, 6], which implies that solutions of (1.1) can be embedded in a multidimensional lattice
such that they obey simultaneously equations of a similar form (albeit with different choices
of the lattice parameters) in all two-dimensional sublattices. Equation (1.1) emerged as the
most general equation in a classification of scalar quadrilateral lattice equations integrable in
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this sense, [7], which includes the previously known cases of lattice equations of Korteweg-de
Vries type, cf [8, 9]. Furthermore, connections have been established between Adler’s equation
and other so-called elliptic integrable systems [10], in particular the elliptic Toda Lattice of
Krichever [11] and the elliptic Ruijsenaars–Toda lattice [12]. Also in [13] integrable mappings
of a generalized QRT type were found as periodic reductions of this equation. Among 2D
scalar discrete integrable equations, Adler’s equation has thus been revealed as remarkably
pervasive, making its study of singular importance.

One well-established procedure to obtain explicit solutions is the application of BTs on
known, perhaps elementary, solutions of the lattice equation. This is particularly natural here
as the multidimensional consistency implies that the BT is inherent in the lattice equation
itself. However, in order to implement the BT one needs an initial solution: the seed solution,
and the establishment of elementary solutions that qualify as seed solutions turns out already
to be a delicate problem in the case of Adler’s equation. The resolution of this problem, and
the subsequent construction of soliton solutions using the BT, is the main achievement of this
paper.

2. The Jacobi form of Adler’s equation

We will study Adler’s equation in a different form from (1.1), which was found in [14], namely

p(ũu + û̂̃u) − q(ûu + ũ̃̂u) − r(û̃u + ũ û) + pqr(1 + ũu û̂̃u) = 0, (2.1)

where the parameters p, q and r are related to each other and can be expressed in terms of
Jacobi elliptic functions with modulus k by introducing the points

(p, P ) = (
√

k sn(α; k), sn′(α; k)), (q,Q) = (
√

k sn(β; k), sn′(β; k)),

(r, R) = (
√

k sn(γ ; k), sn′(γ ; k)), γ = α − β
(2.2)

(the primes denoting derivatives w.r.t. the first arguments of the Jacobi functions) on the elliptic
curve

� = {(x,X) : X2 = x4 + 1 − (k + 1/k)x2}. (2.3)

It was pointed out by Adler and Suris to one of us that the Weierstrass form (1.1) and the
Jacobi form (2.1) of Adler’s equation are equivalent in the sense that there exists a Möbius
transformation of the variables together with a bi-rational transformation of the parameters
that takes one form into the other [15].

We adopt here the Jacobi form because the analysis leading to the solutions is simpler
than for the Weierstrass form. For that purpose it is useful to view the relation between the
parameters in terms of the Abelian group structure on the elliptic curve (2.3) which has the
following rational representation:

p = q ∗ r =
(

qR + rQ

1 − q2r2
,
Qq(r4 − 1) − Rr(q4 − 1)

(1 − q2r2)(rQ − qR)

)
, (2.4)

where p = (p, P ), q = (q,Q) and r = (r, R). It can be verified by direct computation that
the product in the group ∗ defined in this way is associative, it is obviously commutative,
furthermore the identity is e = (0, 1) and the inverse of a point p is p−1 = (−p, P ). We
consider the lattice parameters of (2.1) to be the points p = (p, P ) and q = (q,Q) on �,
while r is found from the formula r = p ∗ q−1, which expresses the original relation between
the uniformizing variables, γ = α − β introduced in (2.2). In fact, this relation encodes the
addition formulae for the relevant Jacobi functions, where r can be seen as the point obtained
by a shift of p on the elliptic curve defined by the point q. Alternatively, it is well known that a
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symmetric biquadratic equation defines a shift on an elliptic curve, see for example [16], and
this can be made explicit by introducing the symmetric biquadratic

Hr(p, q) = 1

2r

(
p2 + q2 − (1 + p2q2)r2 − 2pqR

)
. (2.5)

From the factorization(
p − qR + rQ

1 − q2r2

) (
p − qR − rQ

1 − q2r2

)
= 2r

1 − q2r2
Hr(p, q) (2.6)

we see that Hr(p, q) = 0 is satisfied if p = q ∗ r or p = q ∗ r−1, i.e., if α = β ± γ in terms
of the uniformizing variables, and in this way H = 0 defines an addition formula for Jacobi
elliptic functions. The biquadratic H is connected to a symmetric triquadratic where the three
variables p, q, r , now appear on an equal footing,

H(p, q, r) = 1

2
√

k
(p2 + q2 + r2 + p2q2r2) −

√
k

2
(1 + p2q2 + q2r2 + r2p2) +

(
k − 1

k

)
pqr.

(2.7)

H = 0 defines a shift on the same curve by the statement that H(p, q, r) = 0 if p = q∗ r∗s−1

or p = q ∗ r−1 ∗ s where s = (
√

k, 0), (the latter being a branch point of the curve �).
This triquadratic is Möbius related to a similar triquadratic expression for Weierstrass elliptic
functions which was used originally by Adler [1] in the construction of (1.1). In the
construction of (2.1) an equivalent role is played by H.

In terms of the points p, q on the curve � it is now useful to introduce the quadrilateral
expression

Qp,q(u, ũ, û,̂̃u) = p(ũu + û̂̃u) − q(ûu + ũ̃̂u) − pQ − qP

1 − p2q2
(û̃u + ũ û − pq(1 + ũu û̂̃u))

(2.8)

in terms of which (2.1) takes the form

Qp,q(u, ũ, û,̂̃u) = 0. (2.9)

The relation between Q and H can then be given by the equations

Qp,q(u, ũ, û,̂̃u)Qp,q−1(u, ũ, û,̂̃u) = 4p2q2

1 − p2q2
(Hp(u, ũ)Hp(̂u,̂̃u) − Hq(u, û)Hq(̃u,̂̃u))

(2.10)

and

QûQ̂̃u − QQû̂̃u = 2pqrHp(u, ũ), (2.11)

cf [7], where in (2.11) we have suppressed the arguments and subscripts of Qp,q(u, ũ, û,̂̃u) in
order to make room for partial derivatives with respect to the arguments.

3. Seed solution

The cubic consistency of Adler’s equation [5, 6] means that given one solution, u, of (2.9) the
pair of ordinary difference equations for v

Qp,l(u, ũ, v, ṽ) = 0, Qq,l(u, û, v, v̂) = 0, (3.1)

are compatible and, moreover, if v satisfies this system it is also a solution of (2.9). We say
that (3.1) forms an auto-Bäcklund transformation (BT) for (2.9). The new solution v may
depend not only on u but also on the Bäcklund parameter l and on one integration constant.
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For Adler’s equation in the Jacobi form (2.1) we can easily verify the solution

u =
√

k sn(ξ0 + nα + mβ; k), (3.2)

where ξ0 is an arbitrary constant and α, β are as defined in (2.2). It turns out, however, that this
solution is not suitable as a seed for constructing soliton solutions using the BT. Specifically,
for (3.2) the equations (3.1) for v are reducible and have only two solutions which we label u

and u, given by

u =
√

k sn(ξ0 + nα + mβ + λ; k),

u =
√

k sn(ξ0 + nα + mβ − λ; k),
(3.3)

where λ is the uniformizing variable associated with l, i.e., l = (l, L) = (
√

k sn(λ; k),

sn′(λ; k)). In fact (3.3) is nothing more than (3.2) extended into a third lattice direction
associated with the BT (3.1) (hence the notation with u interpreted as forward shift on u in
the direction of the BT, and u as a backward shift). This is an idea which we will use later
and refer to as a covariant extension of the solution. Since the action of the BT only trivially
extends (3.2), application of the BT on the solution (3.2) clearly does not lead to essentially
new solutions. Therefore, in order to find soliton solutions for Adler’s equation we require a
germinating seed solution, i.e., a solution on which the action of the BT is non-trivial.

We proceed by making the hypothesis that there exists a solution of (2.9) which is a
fixed point of its BT (3.1), i.e., which is constant in a third lattice direction associated with
a particular Bäcklund parameter t = (t, T ) = (

√
k sn(θ; k), sn′(θ; k)). In that case the BT

reduces to the system

Qp,t(u, ũ, u, ũ) = 0, Qq,t(u, û, u, û) = 0. (3.4)

Although it is not obvious that such fixed points exist, i.e., that the system (3.4) is compatible,
we will show that for Adler’s equation (2.1) such a solution indeed arises and provides a
germinating seed.

To find such solutions we begin by considering first the equation of (3.4) involving the
shift u �→ ũ. From the expression (2.8) this is quadratic and symmetric in u and ũ, and hence
can be viewed as a quadratic correspondence having n + 1 images on the nth iteration. What is
not obvious is that as a multivalued map this correspondence commutes with its counterpart,
the map u �→ û defined by the second equation of (3.4), but this will become apparent below.
From (2.8) the first equation of the system (3.4) is

Qp,t(u, ũ, u, ũ) = 2pũu − t (u2 + ũ2) − pT − tP

1 − p2t2
(2ũu − pt(1 + u2ũ2)) = 0. (3.5)

We introduce a new parameter pθ = (pθ , Pθ ) defined by

p2
θ = p

pT − tP

1 − p2t2
, Pθ = 1

t

(
p − pT − tP

1 − p2t2

)
. (3.6)

For later convenience we use the symbolic notation δθ (p, pθ ) to denote the correspondence
between the original parameter p and the θ -deformed parameter pθ , given by the relations
(3.6). Thus, we can now write

Qp,t(u, ũ, u, ũ) = t
(
2ũuPθ − u2 − ũ2 + (1 + u2ũ2)p2

θ

) = −2pθ tHpθ
(u, ũ) = 0 (3.7)

bringing (3.5) to the standard form of the biquadratic addition formula (2.5) for the Jacobi
elliptic functions. As before, this defines a shift on an elliptic curve of the same type as (2.3)
but now with a new modulus kθ , namely

�θ = {(x,X) : X2 = x4 + 1 − (kθ + 1/kθ )x
2},

kθ +
1

kθ

= 2
1 − T

t2
= 2

1 − sn′(θ; k)

k sn2(θ; k)
.

(3.8)
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The deformed parameter pθ is a point on this deformed curve, pθ ∈ �θ , as can be verified by
direct computation using the fact that the seed parameter and the original lattice parameter lie
on the original curve, t, p ∈ �. What (3.7) tells us is that the solution of the first equation of
(3.4) can be parametrized in terms of Jacobi elliptic functions associated with the deformed
curve �θ , and thus by introducing uniformizing variables on �θ we can write the solution
explicitly. Setting pθ = (

√
kθ sn(αθ ; kθ ), sn′(αθ ; kθ )), u = √

kθ sn(ξθ ; kθ ) it follows that

ξ̃θ = ξθ ± αθ �⇒ Hpθ
(u, ũ) = 0 �⇒ Qp,t(u, ũ, u, ũ) = 0. (3.9)

Here the deformed lattice parameter αθ is related in a transcendental way to the original lattice
parameter α through either of the equivalent relations:

kθ sn2(αθ ; kθ ) = k sn(α; k) sn(α − θ; k), sn′(αθ ; kθ ) = sn(α; k) − sn(α − θ; k)

sn(θ; k)
,

(3.10)

which follow from (3.6).
However, so far we have only dealt with the first part of (3.4); we must also solve

simultaneously the second part. The crucial observation is that the deformed curve which
emerges in the solution of the first part is independent of the lattice parameter p characterising
the direction in the lattice. Thus, if we proceed in the same way with solving the second
equation in (3.4) we get exactly the same curve �θ and hence the solutions of the latter are
given by the shifts on the curve as follows:

ξ̂θ = ξθ ± βθ �⇒ Hqθ
(u, û) = 0 �⇒ Qq,t(u, û, u, û) = 0, (3.11)

where we have introduced the deformed variable qθ , again through the correspondence
δθ (q, qθ ), and uniformizing variable βθ by the relation qθ = (

√
kθ sn(βθ ; kθ ), sn′(βθ ; kθ )).

βθ is related to β through the relation (3.10) with α replaced by β, but involving the same
modulus kθ .

Now, clearly on the curve �θ the maps given in (3.9) and (3.11) commute, and this implies
the compatibility of the solutions of both members of (3.4), i.e., we have a simultaneous
solution which is the required seed solution we are looking for. In explicit form this new seed
solution can be expressed as

uθ(n,m) =
√

kθ sn(ξθ (n,m); kθ ), ξθ (n,m) = ξθ,0 + nαθ + mβθ, (3.12)

where ξθ,0 is an arbitrary integration constant. We note that the seed solution uθ , distinguished
by the label θ , reduces to the non-germinating seed (3.2) in the limit θ −→ 0, i.e.,
t −→ e = (0, 1), the identity on the curve. The equations (3.9) and (3.11) clearly have
other solutions as well, corresponding to the choice of sign at each iteration, and these lead
to different seeds. As a particular example, an alternating seed solution can be obtained by
choosing a flip of sign at each iteration step of the seed map. We will refer to (3.12) as the
canonical seed solution.

4. One-soliton solution

We will now show that the canonical seed solution germinates by applying the BT to it, i.e.,
by computing the one-soliton solution. We need to solve the simultaneous ordinary difference
equations in v

Qp,l(uθ , ũθ , v, ṽ) = 0, Qq,l(uθ , ûθ , v, v̂) = 0, (4.1)

which define the BT uθ �→ v with the Bäcklund parameter l. The seed itself can be covariantly
extended in the lattice direction associated with this BT, that is we may complement (3.12)
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with the equation ξ θ = ξθ + λθ , where the denotes a shift in this new direction which is
associated with the parameter l and as before λθ is the uniformizing variable for lθ defined by
the relation δθ (l, lθ ). The problem of solving the system (4.1) can be simplified because this
covariantly extended seed provides two particular solutions, i.e.,

Qp,l(uθ , ũθ , uθ , ũθ ) = 0, Qq,l(uθ , ûθ , uθ , ûθ ) = 0,

Qp,l(uθ , ũθ , uθ , ũθ ) = 0, Qq,l(uθ , ûθ , uθ , ûθ ) = 0.
(4.2)

(Compare with the non-germinating seed for which these were the only solutions.) From the
multilinearity of (2.8) equations (4.1) are discrete Riccati equations for v. The key observation
is that since these equations share two solutions (4.2) they can be simultaneously reduced to
homogeneous linear equations for a new variable ρ by the substitution

v = 1

1 − ρ
uθ − ρ

1 − ρ
uθ . (4.3)

After some manipulation the system for ρ found by substituting (4.3) into (4.1) can be written
as

ρ̃ =
(

pθ l − lθp

pθ l + lθp

)(
1 − lθpθuθ ũθ

1 + lθp
θ
uθ ũθ

)
ρ, ρ̂ =

(
qθ l − lθ q

qθ l + lθ q

)(
1 − lθ qθuθ ûθ

1 + lθ q
θ
uθ ûθ

)
ρ, (4.4)

where we mildly abuse notation by introducing the modified parameters

pθ =
√

kθ sn(αθ + λθ ; kθ ), p
θ

=
√

kθ sn(αθ − λθ ; kθ ),

qθ =
√

kθ sn(βθ + λθ ; kθ ), q
θ

=
√

kθ sn(βθ − λθ ; kθ )
(4.5)

(pθ and qθ do not depend on lattice shifts). We take (4.4) as the defining equations for ρ,
which we refer to as the plane-wave factor. The compatibility of this system for ρ can be
verified directly, specifically ˜̂ρ = ̂̃ρ as a consequence of the identity for the Jacobi sn function(

1 − k2 sn(λ) sn(α + λ) sn(ξ) sn(ξ + α)

1 + k2 sn(λ) sn(α − λ) sn(ξ) sn(ξ + α)

) (
1 − k2 sn(λ) sn(β + λ) sn(ξ + α) sn(ξ + α + β)

1 + k2 sn(λ) sn(β − λ) sn(ξ + α) sn(ξ + α + β)

)
=

(
1 − k2 sn(λ) sn(β + λ) sn(ξ) sn(ξ + β)

1 + k2 sn(λ) sn(β − λ) sn(ξ) sn(ξ + β)

)
×

(
1 − k2 sn(λ) sn(α + λ) sn(ξ + β) sn(ξ + α + β)

1 + k2 sn(λ) sn(α − λ) sn(ξ + β) sn(ξ + α + β)

)
.

The one-soliton solution for the Jacobi form of Adler’s equation, which we denote by u(1), is
thus given by

u(1)(n,m) =
√

kθ

1 − ρ(n,m)

(
sn

(
ξθ (n,m) − λθ ; kθ

) − ρ(n,m) sn
(
ξθ (n,m) + λθ ; kθ

))
, (4.6)

with ξθ (n,m) as in (3.12) and ρ(n,m) defined by (4.4).

5. Compatible continuous systems

As was pointed out in [7] Adler’s equation goes to the Krichever–Novikov (KN) equation in
a particular continuum limit. We present this limit for the Jacobi form of Adler’s equation by
first introducing continuous variables x and y through the truncated vertex operator

Cp = e
√

2p(∂x+ p

6 ∂y). (5.1)
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By writing ũ = Cpu and û = Cqu the variable u on the lattice can be reinterpreted as a
sampling of u at points on the (x, y) plane. In the limit as p, q −→ (0, 1), (0, 1) we find

Qp,q(u, Cpu,Cqu,CpCqu) = 0 −→
(5.2)

uy − uxxx +
3

2ux

(
u2

xx − u4 − 1 +

(
k +

1

k

)
u2

)
= 0,

i.e., Adler’s equation goes to the KN equation. In the same formal limit the equations (3.1)
and (3.4) go to

uxvx − Hl(u, v) = 0 and (5.3)

u2
x − Ht(u, u) = 0 (5.4)

respectively, that is the auto-BT for the KN equation, cf [1], and the equation for its seed
solution. We note that other compatible differential-difference equations can also be obtained
in this way, for example by writing û = CqC

−1
p ũ and taking the limit q −→ p, Adler’s

equation (2.1) goes to

p(̃u − u˜)uz − P (̃u + u˜)u + ũ u˜ +u2 − p2(1 + ũ u˜ u2) = 0 (5.5)

where z = √
2p(x + 2y/p)/P . Interestingly, the vector field associated with the continuous

flow of equation (5.5), which commutes with the lattice shifts, appears also in the form of the
master symmetries of Adler’s equation, cf [17].

To compute the seed solution of (5.2) one can solve (5.4) coupled with (5.2) itself, or
alternatively one can take a continuum limit of the seed solution for Adler’s equation (3.12).
Either way the calculation is straightforward and we find

uθ(x, y) =
√

kθ sn(ξθ (x, y); kθ ),

ξθ (x, y) =
√

−t/2(x0 + x − (2 + T )y/t)/
√

kθ ,
(5.6)

where x0 is an arbitrary integration constant. This can be verified as a solution of (5.2) directly
(and for fixed y as the general solution of (5.4)).

Calculation of the one-soliton solution can proceed by the continuum limit of (4.6) and
(4.4), or by substitution of the continuous seed solution (5.6) into (5.3) followed by the
identification of two particular solutions (this time from an extension of the continuous seed
solution defined by (5.6) together with ξθ (x, y) = ξθ (x, y) + λθ ). This calculation gives the
one-soliton solution for (5.2) as

u(1)(x, y) =
√

kθ

1 − ρ(x, y)
(sn(ξθ (x, y) − λθ ; kθ ) − ρ(x, y) sn(ξθ (x, y) + λθ ; kθ )) (5.7)

with ξθ (x, y) as in (5.6). Here ρ(x, y) is the continuous plane wave satisfying the following
ODEs in terms of x and y:

ρx(x, y) = −lθ

l
√−t/2

(
1 − l2u2

θ (x, y)

1 − l2
θ u

2
θ (x, y)

)
ρ(x, y),

ρy(x, y) = −2lθ

lt
√−t/2

(
2T +

(
1 − l2

θ

/
l2)(1 − l2t2)

)
ρ(x, y) − 2 + T

t
ρx(x, y).

(5.8)

Note that in the above equations the square roots in
√

kθ and
√−t/2 refer to the same choice

of branch wherever they appear.
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6. Concluding remarks

In this communication we have given solutions to Adler’s lattice equation in its Jacobi form.
The seed solution is found as a fixed point of the auto-Bäcklund transformation (BT) for this
equation, and application of the BT (with different Bäcklund parameter) to the seed solution
yields the one-soliton solution. The construction of the seed solution requires a deformation of
the original elliptic curve in terms of which the lattice parameters of the equation were given.
It seems that there are interesting modular transformations that arise through this construction.
The one-soliton solution involves some functions which are solutions of a consistent set of
first order homogeneous, linear, but non-autonomous equations involving the seed solution.

In order to calculate higher soliton solutions it suffices to apply the permutability condition
of the BTs, which is implicit in the original lattice equation. In particular this means that
higher soliton solutions will be rational functions of the seed and the one-soliton solution given
here. These results and other details will be given in a separate publication [18]. With one
exception (the lattice Schwarzian KdV equation) the methodology presented here works for
all equations in the classification of Adler, Bobenko and Suris [7], and a list of these solutions
has been obtained which will be included in [18]. The results presented here form, as far as
we are aware, the first examples of explicit solutions for Adler’s equation.
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